Posted on

What is the HACCP control?

What is the HACCP control?

The HACCP system refers to the Hazard Analysis and Critical Control Points of the different processes in the food industry. It is characterized by its preventive approach to food-related hazards rather than a reactive approach.

Ultimately, the HACCP system makes it possible to identify hazards and take measures to control them in order to ensure food safety.

Origin of HACCP control

The origin of HACCP controls comes from the aeronautical industry, when during the first space programs it was established as a microbiological safety control. Previously, all quality control systems were based on the analysis of the final product, with a clearly reactive focus on possible problems.

It was not until the mid 80’s those different institutions such as WHO, ICMSF, NAS, NACMCF promoted its application in the food industry.

The 7 principles of HACCP control

HACCP control is based on 7 fundamental principles:

PRINCIPLE 1: Conduct a hazard analysis.

PRINCIPLE 2: Determine the critical control points (CCP).

PRINCIPLE 3: Establish a critical limit(s).

PRINCIPLE 4: Establish a monitoring system to control the critical control points.

PRINCIPLE 5: Establish corrective actions to be taken when monitoring indicates that a particular CCP is not under control.

PRINCIPLE 6: Establish testing procedures to confirm that the HACCP system is working effectively.

PTINCIPLE 7: Establish a system of documentation of all procedures and records appropriate to these principles and their application.

How to develop a HACCP plan?

To develop a HACCP plan, 12 tasks must be differentiated based on the 7 principles previously mentioned.

Step 1: Establish a HACCP team

The first activity will be to establish the scope of the study to be carried out, which will allow the team to be set up as closely as possible to the needs. This team should be composed of people from different disciplines within the organization to better identify all the critical control points.

  • On the one hand, a manager or team leader should be established to convene the group and direct its activities to ensure the correct implementation of the concept.
  • There must also be a specialist in the product to be analyzed and the processes it follows. This will be the person in charge of designing the product flow diagrams.
  • Several specialists who are familiar with certain hazards and risks related to quality controls.
  • There will be a technical operator in charge of compiling the progress and conclusions throughout the different steps taken to draw up the plan.
  • Additionally, the people involved in the different processes being analyzed can be incorporated at different points in the process.

Step 2: Describe the product to be analyzed

First it is important to identify and delimit the product to be analyzed. There is a specific form to carry out this task. Information about the safety of the product, packaging method, storage, transport, shelf life and recommended storage temperatures should be included. All this information should be included on the product label.

Step 3: Determine intended use of the product

The intended use of a product will directly influence the risks to which it will be exposed.  On the one hand, it will be necessary to identify whether the product will be subjected to any processing or cooking prior to consumption, as well as the characteristics of the end consumer and whether he/she is in a position of vulnerability. Finally, the possibility of improper use of the product must be identified.

Step 4: Preparing the product flow diagram

This phase should be led by the product specialist, usually a quality control manager or process engineer. This diagram will be specific to each plant and will have annotations for each different plant.

Step 5: Confirmation of the diagram on site

Once the Product Flow Diagram has been identified and designed, the other members of the team should go to the production site and check the different sections phase by phase.

Step 6: Hazard identification and analysis

  • Hazard identification: In this step, all hazards, whether actual or potential, that may occur in the ingredients or stages of the product system are identified.

Generally, food safety hazards are classified into the following 3 types:

1.  Biological: usually foodborne pathogenic bacteria such as Salmonella, Listeria and E. coli.

2.  Chemical: these can be of natural origin, produced by microorganisms or chemical substances added by humans such as fungicides or insecticides.

3. Physical: those contaminating elements such as insects, stones or metallic fragments.

  • Hazard analysis

The probability of a hazard occurring is called risk. Each probability or risk is assigned a value according to the degree of certainty as to whether it will occur. Once the probability has been established, an analysis is made of how much risk this hazard poses to people or animals. Those hazards that are finally determined as inadmissible will be transferred to the Critical Control Points.

Finally, once the hazards have been identified, control measures must be worked out. These control measures will be oriented to reduce the risks.

Step 7: Establish Critical Control Points (CCP)

In this step, the hazards previously identified in step 6 are analyzed to determine whether control measures are in place and whether they can adequately control the hazard.

If it is established that there are no adequate control measures, production of the food will be suspended until these are defined and implemented.

Step 8: Establish critical limits for each CCP

Critical limits can respond to different measurement criteria, such as temperature, moisture content, exposure time, pH, water activity or appearance. These measurement criteria should have established allowable levels or limits.

Step 9: Establish a surveillance procedure

By surveillance we mean the monitoring of critical control limits to ensure compliance. This surveillance should be rapid and should enable prompt corrective action to be taken.

The most common surveillance procedures refer to time, temperature and moisture content.

Step 10: Establish corrective actions

Corrective measures should be established for the most unfavorable cases. These corrective actions should be established considering the end use of the product, hazards, risks and their severity.

Step 11: Verify HACCP plan

Once the plan has been established, it is necessary to verify and validate that all hazards, limits, and corrective measures have been correctly established.

This can be done in several ways:

  1. To order an external audit
  2. Analyze samples of the product with methods other than those established.
  3. Periodic observations of Critical Control Point operations.

Step 12: Record keeping

Finally, we have the task of record keeping. This is a very important point since it allows to follow up the processes followed by the product, leaving a record of compliance with the critical limits.

How to carry out controls in the JANBY Track?

The Janby Track is a system that digitalizes and automates the cooking process as well as the Sous Vide regeneration process. In addition, it has a wide range of options and configurations that allow the user to set alarms and alerts that meet the control needs of each organization.

Label generation and the option of discarding batches

On the one hand, responding to principle 1 of HACCP control and to task 2 of describing the product, you have the option of generating product labels with all the necessary information using the Janby Cloud, as well as discarding batches that do not comply with regulations with a single click.

Activity logs in the Cloud

In relation to the last step of the HACCP plan on record keeping, all movements and actions that occur throughout the service are automatically recorded, as well as the time at which it was cooked, for how long, at what temperature the water was and the temperature of the probe in case it was used.

Additionally, with the option of connecting the Janby Track to the order system, we would have information of who has been the final customer of that product.

Active controls during processing

In relation to task 9 of establishing monitoring tasks for critical control points, active controls are additional parameters that can be established for each product or recipe in case they require further monitoring.

Additional controls can be set for water temperatures, probe temperatures, intermediate warnings during processing or pasteurization of a product.

Process controls during processing

Similarly, process controls refer to controls that are set to limit or enable actions when using the system. These may refer to product reuse, durations of warnings or permissions when extracting a product from water.

In short, HACCP is a preventive plan that aims to ensure the safety of food that is made available for human consumption. And in the case of low-temperature sous-vide cooking, Janby has developed a system that makes it possible to apply the different criteria for greater control.

Posted on

Food safety when cooking at low temperatures

Is it save to serve chicken cooked at 63ºC?

When first discovering the Sous-Vide cooking technique, is relatively common to question yourself wether it is safe to cook chicken at 63ºC. In this article we want to analyze in detail the cooking process at low temperatures, not only form the classic Time/Temperature table stand point, but we want to understand where these tables came from.

What is the Sous-Vide cooking technique?

First of all, we have the culinary technique that consist on cooking at low temperatures and on the other hand we have the Sous-Vide technique, which consists in isolating a product in a waterproof sealed container from which the air has been extracted. This air extraction can be done for various reasons such as, product conservation, to cook the product, to infusionate or marinate. What we commonly know as Sous-Vide cooking is the combination of Sous-Vide and the low temperature cooking process. This differentiation may sound confusing at first, but it is crucial to understand what we will be trying to cover in this article, how to ensure food safety while Sous-vide cooking. And to make the long story short, we will refer to it as Sous-vide.

Sous-Vide cooking is a combination of two paramettres: time and temperature. The fact that the cooking is done in waterproof and hermetically sealed bags enables to preserve all aromas and flavours. Moreover, because the cooking is done at low temperatures all nutrients will be preserved at the same time as we obtain textures that would be impossible with the traditional cooking method. But, how can we ensure a safe preparation?

How can I get a safe output when cooking at low temperatures?

According to the OMS, the salmonella(no tifoidea) is in the top 4 cause for illnesses related to diarrhea in the word. Even in the UE, where the effect is much lower compared to other regions, 92.649 cases where reported in 2017. Salmonella is a bacterial pathogen that can be found in the majority of meat or poultry. This makes it crucial to apply lethality treatments to those products before serving. Lethality is the process or combination of processes that ensures a specific, significant reduction on the number of Salmonella and other pathogens in the product.

We are talking about a significant and specific reduction raher than of a complete elimination of the pathogenic agents, which would be called sterilization. The objective is that in case the product has been polluted with pathogenic agents, these are eliminated enough so that the consumption of the product is safe. This process will also imply that the shelf life of the product will depend of the process carried out after as the conditions in which is stored.

When Sous-vide cooking this lethality process consists on applying heat and is the one we are focusing on in this post. However, we have to mention that there other lethlty treatments such as: drying, fermentation, salt curting high pressures…

The reason why the lethality objectives are centered in Salmonella is because it is the more resistent in the cooking processes among the comon ones. It has also been found that acommon cause for Salmonella outbreaks is the insufficient cooking of the product. On the contrary, in the post-lethality and stabilization treatments it is more common to focus on listeria (post-lethality) and toxins derivated from sporeforming bacterias like Clostridium perfringens and botulinum (Stabilization).

What is the pasteurization?

The US Food Safety and Inspection Service (FSIS) defines the pasteurization as any process, treatment, or combination thereof, that eliminates or reduces the number of pathogenic microorganisms to achieve at least a 5-log reduction at the end product. Keep calm, and let´s understand what this means. With everything that we have said until now it has become clear that the pasteurization is a lethality process with the objetive of reducing pathogenic agents in a significant and specific way, up to 5-log. You may have the logarithmic scales a little bit forgotten, don´t worry, we are here to explain this. The logarithmic scales are a way of displaying numerical data over a very wide range of values in a compact way. In logarithms with moving a unit of distance along the scale means the number has been multiplied by 10. Understood, so a 2-log reduction implys dividing per 10 twice, which is the equivalent of a 99% reduction (100 -(100/10)/10= 99% ), then 5-log es is a 99.999% reduction.

How to apply the pasteurization when cooking at low temperatures?

So, the definition was very precise but, how we apply this into the everyday operations in the kitchen? Luckyly for us, after several laboraory studies, we have some tables that show different time and temperature combinations that can be used for different products. The above has served to understand where the tables come from, and to understand that any of the time and temperature combinations shown in the tables represents the significant reduction of the pahogenic agents so that the consumption of the product becomes safe. However, we must not mix up these tables with Sous-vide recipes. The time and temperature combination of the tables is intended merely to the reduction of those apathogenic agents, however, the Sous-Vide recipes attend to the texture a given combination of time and temperature is able to provide in order this to be tastiest. So, the right recipe will be the one that can meet both criterias, later on we will show you some tools in order to achieve this.

If you were wondering why each protein has several time and temperature combinations, the answer is very interesting. There is a range of temperatures where pathogenic bacteria can reproduce and proliferate. Even if each microorganism has its own values, temperatures between 5 and 54ºC are considered risky. Above 54ºC microorganisms start to diminish rather than reproduce. However, this doesn´t happen immediately, it is required to maintain the temperature for as long as the tables indicate to reach the pasteurization point. For instance, with chicken, once we reach 73ºC pasteurization happens instantly. Also, if you have a look at the tables, poultry with unknown fat values, have to be kept 13 minutes at 63ºC.

What are the requirements to pasteurize?

So, if those tables existed, why have we always known 73ºC as the safe temperature for cooking? We must say that these tables are recommendations to achieve the sufficient lethalty in order for a product to be safe. But, together with them, there are some additional requirements we should apply in our low temperature cooking process.

Lets have a look:

  • The temperature must be measured at the coldest point of the food we are cooking, which is refered to the internal temperature of the product, not the one of the water.
  • The thermometer must be calibrated and have a 1ºF precision.
  • There must be time registers during the whole process. (With a maximum of 1 minute between measurements)
  • The relative humidity during the cooking process must be controlled. For instance, if we put a piece of meat in the oven into a relatively low temperature, the evaporation process will make the temperature at the surface to descend, and could make it a place for bacteria to resist. Fortunately, when Sous-Vide cooking, as the cooking is done inside hermetically sealed plastic bags, evaporation doesnt happen, so we don´t need to measure humidity.

When Sous-Vide cooking, as this is done via immersion, a foam is used between the plastic and the probe to avoid the air and water to get in contact with the food.

All the above was simplified into the before shown tables, as the values on these tables provide immediate pasteurization, which may spread the idea that all the rest were dangerous.

Which Sous-vide equipment is focused in HCCP?

Nowadays, and thanks to the Sous-Vide equipment of manufacturers like Sammic, we are able to measure the temperature at the heart of the product and to generate several records to certify that the elaboration of a given product has been safely carried out. But not only this, at Janby we wanted to contribute to the digitalization of the Sous-vide process so we have developed a registered software that automatically not only checks the process in real time, but emits notifications when pasteurization is achieved. In this way, we could set the Time and Temperature parameters that meet our texture criteria and the Janby Track will concurrently check the pasteurization tables for the given product. If the Track identifies that the product is not pasteurized this will keep it in the water until is met. Also, if for any reason the water temperature descends half way the cycle, Janby Track will reset the pasteurization times to ensure and optimize the process.

How to ensure food safety with the JANBY Track?

Janby Digital Kitchen is born to digitalize the processes in the kitchen and with its first product, the Janby Track, it digitalizes the Sous-vide process. The Janby Track, has some Active Controls that among other things take care of the pasteurization. As its name indicates, these controls work actively throughout the elaboration of a product and ensure that additional parameters to Time and Temperature are met. There are 4 of them that are focused in the pasteurization and each organization can choose which one to use according to their HACCP requirements, which may vary from industry and from country.

1. Product pasteurization control: The probe pasteurization control monitors the temperature at the heart of the product throughout the whole process and ensures the compliance of the selected sanitary regulation. Once the recipe time is concluded, this control analyzes if the accumulated time and temperature meet the regulation. If the regulation is met, the Track will put the product ready to extract, if not, the Track will maintain it cooking until this is met.

2.Continious probe monitorization: The probe control monitors the temperature at the heart of the product continiously and acts accordingly. To set this continious probe control you need to establish a minimum probe temperature to be monitored throughout the whole elaboration process. If for any reason, the temperature at the heart of the product goes below the established temperature, the recipe will be restarted.

3. Final probe measurement: the final probe measurement control makes sure that the temperature at the hear of the product once the elaboration is completed is the one the user has set. In order to do so, the operator must introduce the probe at the end of each elaboraion.

4. Continious water monitorization: The water control monitors the water tempeature continiously and acts accordingly. To set this continious water control you need to establish a minimum water temperature to be monitored throughout the whole elaboration process. If for any reason, the temperature of the water goes below the established temperature, the recipe will be restarted.

Find below the link to the official report carried out by the FSIS about the food safety measures to follow for Salmonella. The document is specifically targetd to the RTE (Ready to Eat) industry. So, some parts may not necessarily be aplicable to the restaurant industry. However, the pasteurization tables and explanations regarding lethality are valid in any context.

Disclaimer: JANBY Digital Kitchen SL cannot and does not substitute for legal or health advice about food regulations in any legal jurisdiction, nor can we guarantee that following the information presented by JANBY Digital Kitchen SL will prevent foodborne illness. Unfortunately, the many variables associated with food contamination make eliminating all risk and preventing all infections virtually impossible. We cannot accept responsibility for either health or legal problems that may result from following the advice presented by JANBY Digital Kitchen. If you operate a commercial establishment and serve food to the public, consult the rules and health regulations in your area.

Posted on

Alternatives for restaurants with small kitchens and without smoke vent

You have found the perfect place, at a reasonable cost in an unbeatable location, however, the kitchen is not very big, and it does not have a smoke vent, with the challenges that this entails, such as.

  • The limitation of space for a certain number of workers
  • The little storage space that increases replacement needs thus increasing product costs
  • The limitation of the culinary offer

What do we call a small kitchen?

Although each professional kitchen can vary in size, most tend to be between 46 and 186 square meters, so everything smaller than 46 square meters is considered a small kitchen.

This can respond to different models of restoration, such as: food tracks, dark kitchens, bakeries or Take Away stores just to name a few.

What is the smoke vent?

The smoke vent is a conduit that is responsible for transporting the fumes and vapors that are generated in a kitchen, or even from boilers or heaters to the outside of the building or corresponding premises.

Its installation, in addition to implying a great technical difficulty, and being very costly economically speaking, requires the express and unanimous authorization of the community of owners to enable it.

Alternatives

An alternative is to serve cold meals or those that do not require any type of cooking, such as: salads, ice creams, smoothies, or sandwiches. But if you want to offer a selection of hot dishes, the Sous-Vide technique can be a very successful solution.

Sous-vide is a culinary technique that, through vacuum packaging, cooks and maintains the integrity of food by cooking it at relatively low temperatures. Thanks to this technique, the nutrients and organoleptic values ​​of the product are preserved, and its shelf life is extended. A technique initially used for haute cuisine that is now a standard in kitchens of all kinds.

In addition, sous-vide results in a very productive working system since vacuum packaging combined with individual portioning favors both longer expiration periods and assembly cooking.

Thus, we can say that it is a system that improves performance, productivity and versatility in restaurant kitchens, hotels, catering, and catering groups since:

• It favors the kitchen assembly free of waste.

• It is easy, profitable, and productive.

• Controlled inventory and stock.

• Enables the preparations of a high-quality dish in a matter of minutes.

• Portions without waste ready to work.

• Reduces cross contamination.

• Ensures quality replicability.

The production of this type of product can be done in several ways:

1. Own central kitchen: The Sous-Vide technique makes it possible to produce large quantities of food in a traditional way, to pack them and store them for later regeneration. This makes it possible, on the one hand, to adapt kitchen hours to ones that are more like office hours and reduce the workload at the service moment.

2. Vacuum-packed 5th-range supplier: More and more restaurants are turning to specialized 5th-range food manufacturers to expand their menus in a more efficient way. These products only require a controlled retherming to exploit their potential, thus leaving room to focus on the service and the final touch of the dishes.

There is equipment from various manufacturers that allow controlled retherming to be carried out, but only Sammic’s SmartVide offers the possibility of connecting to the JANBY Track, to digitize and automate the entire Sous-Vide process.

Here we see two very simple equipment configurations:

What the integration of the JANBY Track contributes to this method is that it manages to control, standardize, and optimize the culinary process efficiently by measuring the cooking time and temperature for each preparation. In addition, it automates the cooking or regeneration process through the language incorporated in the QR code, resulting in the need not only for fewer personnel but also for a less qualified one.

In addition, all processes are automatically registered in the JANBY Cloud, which allows monitoring of all events and incidents in one or more kitchens remotely and centrally.

With this combination of the Sous-Vide technique and process digitalization, a new horizon opens allowing restoration concepts to be created in previously unimaginable places and with much less resources. All of this is achieved, maximizing productivity and operations in a sector that is slowly but unstoppably adapting to the new digital environment.

Posted on

How to control food traceability

What is food traceability?

European regulations define the term traceability as “the ability to find and trace through all production stages, processing and distribution food, feed, food-producing animal or substance intended to be incorporated into food or feed and likely to be incorporated into food or feed”.

What is the purpose of food traceability?

The purpose of product traceability is to be able to trace any food product or raw material within the supply chain and minimize health risks. This is achieved by identifying the batch number, allowing it to be discarded if it poses a safety risk for consumption.

In addition, since 2005, food traceability has been mandatory for companies in the food sector within the European Union.

What are the requirements for food traceability?

The European Union specifies the following 8 traceability requirements (in article 3 of the report published in 2011).

  1. An accurate description of the food.
  2. The volume or quantity of the food.
  3. The name and address of the food business operator from which the food has been dispatched.
  4. The name and address of the distributor if it is not the same as that of the food business operator since the food was dispatched.
  5. The name and address of the food business operator to which the food is dispatched.
  6. The name and address of the consignee (owner) if different from that of the food business operator to which the food is dispatched.
  7. A reference identifying the batch.
  8. Date of dispatch.

What types of traceability should we control?

There are 3 types of traceability that we must control:

Forward traceability

In this phase, all products ready to be shipped are controlled, as well as their recipients.

Process traceability

This traceability refers to the different processes or treatments that the food has undergone between arriving at the company and being shipped.

Backward traceability

This traceability refers to the producer, but in this case of raw materials.

Who is responsible for ensuring food traceability?

The actors involved in the supply chain

The actors involved along the supply chain are responsible for ensuring food safety.

The different states of the European Union

They must put in place different systems of official controls and carry out inspections to ensure food safety throughout the different stages of production, processing, and distribution.

In this area we find for example the HACCP control (Hazard Analysis and Critical Control Points). This is a tool for assessing hazards and establishing control systems that focuses on prevention rather than relying primarily on end-product testing.

The European Union

The European Union regulates quality and safety standards, as well as coordinating actions between the authorities of the Member States where appropriate. It can also impose limits on imports and exports.

It is also who approves the legislation on food traceability that Member States must comply with.

How to make a traceability plan in 5 steps?

Lets get into the 5 steps to establish a traceability plan:

Define product grouping criteria

When establishing a traceability plan, it is important to specify the criteria to be followed to group foods or products. Generally, they are grouped in batches, so that the different groupings of food are labeled with a batch number.

The size of the batch grouping varies according to the criteria previously established in the traceability plan. The more precise the grouping in terms of date, time and machinery used, the smaller the amount of product to be recalled if a health risk is identified.

Create a system of records and documentation

Once the criteria to be followed have been established, it is necessary to implement a system that allows all the data to be collected and recorded in an orderly and automatic manner. For this purpose, batches are usually labeled with barcodes or RFID technology.

The most used codes in the food industry are EAN 13 and EAN 128.

Use of the identification system

All agents in the chain must have an identification system in the three stages of traceability mentioned above, including the batch number on labels, delivery notes and invoices.

Incident control and management

The main objective of this traceability plan is to be able to identify and withdraw all those batches that pose a risk to consumer health; therefore, it must include an action protocol that allows to do it in the most agile, efficient, and safe way.

Test the traceability plan

Finally, the plan must be checked to ensure that it works. This should be done by external people or agents through a system of review and monitoring of all activities.

How to control food traceability with the JANBY Track?

The QR labels of our Janby system in addition to auto configure the cooking equipment for the correct cooking of the products have the following information:

  • Batch identifier
  • Unique bag identifier
  • Organization identifier
  • Discard date
  • Packaging date
  • Information about the manufacturing process
  • Allergen information
  • Information about recommended diets

All this information can be visible on the label or by scanning the QR code we could make visible all the relevant information for the different sanitary audits.

Posted on

The digitalization of RTE products

Digitalization has come to stay, especially in those historically traditional sectors such as the restaurant industry. The sanitary crisis has undeniably worsened the need of structural changes, in this article we will see how the RTE products, and their digitalization offer huge scale economics and reduce the need of qualified workforce in order to face the needs of the restaurant of the future.

Before getting into the RTE products and how these can become a powerful tool in the restaurant industry, we must understand the trends that are already shaping the traditional business models. The following are trends we saw at the webinar ¨New business opportunities for the restaurant industry¨ organized by  Loop new Business Models.

Regarding the sector, we saw that this is going through an increasing professionalization and concentration.

Moreover, the menu sophistication implies a rise in costs, leading to the search of efficient solutions.

On the other hand, we talked about the implication of the processes, where it is more and more difficult to find qualified people and the risk of depending on them. The search of processes that reduce food waste to a 0%. And the increasing regulatory pressure towards food safety.

Finally, we analyzed the trend in relation to the rise of equipment and devices in the kitchen that are not necessarily focused on the kitchen intelligence, which leads us to the search of solutions that enable the generation of quantifiable and measurable value.

At JANBY we believe that the combination of RTE products and our technology becomes a powerful tool to succeed in the new landscape.

What are RTE or Ready To Eat products?

RTE products are those foods that have been previously elaborated, cooked and vacuum sealed, ready to eat with just a final touch of retherming.

The RTE foods are based in the traditional cooking method, combined with processes such as pasteurization and sterilization to preserve flavor, nutrients, and organoleptic properties with no need of additives or preservatives.

What are the benefits of RTE products in he restaurant industry?

The main benefit is a consequence of the elaboration process and resides in the quality of the food and its simple retherming process, making these types of foods a very powerful tool in a sector that is more and more affected by the structural costs and raw material that are lost.

The RTE products enable the kitchen assembly process. This means that the products that the restaurant offers come from a central kitchen or from a RTE food producer ready to just retherm and serve. This process contributes to several benefits such as:

  • The reduction of qualified workforce.
  • A standardized offer.
  • The reduction of cleaning times.

All of which is achieved preserving the quality and being able to use those resources to improve client service.

The kitchen assembly process is very interesting for those places that are affected by a high seasonality or where the rotation of the workforce is very big. This process significantly reduces the dependency of the chef at the service moment, but it doesn’t take it away. There is a big previous job that the Chef must carry out by investigating and analyzing the different food providers to see which one best meets the needs of his restaurant. Does this mean that all restaurants will have the same offer? Not really.

For instance, the machine manufacturers don’t make each single piece of the machines in-house. Is their engineers’ team who designs the specifications that are required for their final machine and outsource it to specialized companies. Does this mean all manufacturers produce the same machines? Not quite, as each manufacturer produces their machines according to their quality and pricing strategies. RTE products enable to adopt an industrial process in the kitchen with the resulting time and cost savings.

So, a Chef could even design its own recipes and outsource their production to a food manufacturer and receive the individual portions to work on demand with the lowest food waste possible.

What problems do RTE producers face?

RTE food producers are facing an ever-growing competition to offer the best possible product at the best price; however, they lack control on how their final client is retherming the product. This is a big problem as an incorrectly carried out retherming process could ruin the output of a whole elaboration, and consequently trigger the change of food provider.

How does JANBY help tackle this problem?

At JANBY we have developed the JANBY Track, a complete solution for the digitalization and automation of retherming that stores all the information related to a product in a QR label and auto-configures the Sous-vide equipment for the right retherming.

It also records the history of the elaboration of each portion and enables to discard batches with just a click. Automate the retherming process, as the operator only has tos can the label and the JANBY Track takes care of configuring the equipment and of keeping track of the different times.

All the information is registered in the JANBY Cloud, even the live events, which makes it possible to manage several kitchens remotely and simultaneously.

Posted on

The JANBY Track at Gastvrij Rotterdam

This week JANBY has been present at Gastvrij Rotterdam at Bidfood NL space next to Kitchen Create.

During the 3 days that the trade show took place the visitors have been able to discover a completely new system that together with Bidfood’s products makes it the perfect solution for professional kitchens.

The restaurant industry in Holland and globally was already anticipating some important changes specially triggered by the Delivery and the digitalization, and the COVID crisis has only accelerated them.

The sudden close of the different restaurant concepts has forced their staff to change sectors and it doesn’t look like they are eager to come back, at least not in a short or medium term. The timetables, working path and the required knowledge to properly run a professional kitchen makes it an unattractive career path now.

Bidfood NL In their constant effort to ease the life of those owning and running a restaurant in the Netherlands, not only provides everything a restaurateur might need in terms of utensils, but also provides high quality food ready to retherm plate up and serve. At the Gastvrij Rotterdam 2021 edition they have included Janbys QR codes and have deployed 5 JANBY Track and Sammic SmartVide units to completely automate the retherming process, ensuring consistent quality and significantly reducing the dependency on the Chef.

Below some pictures of how the units looked:

Posted on

Business case: Bidfood NL and Kitchen Create

Bidfood Netherlands

BIdfoodnl is one of the leading hospitality distribution companies in the Netherlands. They offer a wide product portfolio and almost immediate delivery times that make them strong players in the foodservice field. They differentiate themselves from the competitors by offering additional services to their clients in terms of consultancies, trainings, and demos, which are perceived by the client as high added value services.

The SmartVide food range and Jordy´s Keuken

The difficulty for finding Chefs in the Netherlands, stressed by the COVID situation, has accelerated the development of technological solutions, as well as the offer of quality mise-en-place food that is easy to cook.

Within their catalog of Jordy’s keuken they offer all the necessary elements to make a dish, as well as a SV range. The SV range consists of vacuum-packed products designed to be regenerated by immersion which now also carry Janby’s QR labels. The labels have embedded all the information about the product and, most importantly, its retherming or cooking process. This range of products can be regenerated using the Sammic SmartVides together with the Janby Track for a completely unattended and automated regeneration process, significantly reducing the needs of a qualified Chef in the kitchen.

How can I get the Janby Track license in the Netherlands?

In the Netherlands we work with our partner Kitchen Create. Kitchen Create is a company specialized in custom made professional kitchen solutions for the hospitality industry. In addition to selling Sammic SmartVides, is also a Janby partner and point of contact in the Netherlands.

Restaurants already using the system in the netherlands

After the launch of the system at the Gastvrij Rotterdam show in September 2021, Kitchen Create has installed the system at 3 facilities so far:

Gastrobar Hartig

Tramhuys  

Brasserie Barclay

This is a clear example of how food manufacturers can benefit from the system not only through the traceability of their products, but also by offering an added value to the customer with a system that ensures product quality while reducing the need of chefs.

Posted on

Business case: Lincoln 32

Lincoln 32 is a new restaurant located in the Sant Gervasi area in Barcelona.

Loctaed at both sides of the Augusta Hotel, its Chef, Alberto Rodríguez, offers an avant-garde mediterranean cuisine where proximity product is key.

The offer of the menu is very varied and of a high quality. Most of it is cooked following the Sous-Vide and low temperature and can be ordered either as a full ration or half ration.

In addition to using the Sammic SmartVides for cooking and retherming, they have implemented the JANBY Track system and have given a step forward in the digitalization of their cooking processes.

With an UNLIMITED license, they are able to create individual identifying labels per portion and to trace the whole elaboration process ensuirng the maximun quality in every service.

Posted on

Business case: Maruka Gastro

Maruka gastro is the latest proyect of Chef Enrique Fleischmann, located at the heart of Getaria, is a Gastrobar aimed to provide a simple, fun and tasty menu. The offer is based in the Sous-Vide cooking technique and food regeneration enabled by the latest 4.0 kitchen solution.

The vacuum and low temperatures are the foundations of every food preparation that takes place at Maruka. The working system is based on the standardization of the gastronomic offer through two main regeneration parameters: time and temperature, which guarantee the highest quality of the product.

Maruka

¨In Maruka we are in constant innovation and evolution as a gastronomic group to offer a high quality, safe and different experience¨

One of the key success factors of this culinary proposition comes from the activity of separating the food preparation moment form the regeneration and service. The production phase is carried out in the same kitchen in big quantities but at different times from the service moment, this production is later vacuum sealed in individual portions. On the other hand, the regeneration and service happen on demand, which reduces food waste at 100%. Moreover, the elaborations are prepared in an open to the public kitchen enhancing their experience.

Maruka Wall

Key improvements

  • Reduction of cleaning times
  • Reduction in service times
  • Reduction of food waste

The kitchen is equipped with a SmartVide station composed of 2 Smartvides and 2 water tanks to function with 2 different temperatures at a time.

The whole process is assisted and controlled through the JANBY Track, the complete solution for the control of the Sous-Vide process. It is composed of a software license with different functionalities and a dedicated tablet that records recipes and identifies each bag and their elaboration process. It enables to work with many bags at the same time with an efficiency and accuracy never experienced in the kitchen. JANBY Track has also a Cloud system that records every move, records the historic of each elaboration, analyses trends and ensured food safety.

This is undeniably an innovative proposition that entails all the necessary elements for success.